Planning Equitable Fire and Rescue Service Delivery Based on Informed Decision Making

Katherine Kirk
Operations, Risk and Planning Unit
Queensland Fire and Rescue Service

About Queensland

- Population 3,840,000
- Area 1.7 million square kilometers
- South East corner:
 - Rapid, sustained population growth
 - Increasing population density
- Regional centres:
 - Sustained population growth
- Remoter areas:
 - Decreasing population

About QFRS

- 237 urban stations
 - Cover about 87% of QLD population
 - Permanent stations
 - Auxiliary stations
 - Composite stations
 - Career and auxiliary (part-time) personnel
- 1565 rural brigades
 - Cover about 83% of QLD area
 - 4 classes of rural brigade
 - 44,000 volunteer personnel

Urban Stations

- Building Fire Safety Inspections
 - Hospital premises
 - Licensed premises
 - Accommodation premises

- Community Education
 - Operation Safehome
 - School-based programs (Fire Ed, RAAP)

Urban Stations

- Attend 60,000 incidents per year
 - Fires
 - Vehicle accidents
 - Other rescues
 - HAZMAT
 - Unwanted alarm activations

 Conforms to the Australasian Incident Reporting System - AIRS

Rural Brigades

- Attend unknown number of incidents per year
 - Voluntary reporting
 - Majority are landscape fires
 - Also structural fires, rescues, HAZMAT
- Separate database
- Similar structure but cut-down
 - Fewer fields
 - Fewer coding options

Some questions worth asking

 Are our resources spread to provide equity of service delivery right now?

 By 2026, the population of SEQ will be 50% higher than it is now. How many more incidents per year will we have to attend?

What new resources will we need?

Where will they need to be located?

Some inescapable facts

- Planning is required to
 - Find the most appropriate location
 - Design the appropriate facilities
 - Determine the most appropriate equipment

- Time and money are required for
 - Training new personnel
 - Building
 - Obtaining new fleet assets

Analysis Basics

- Number of incidents occurring within a station or brigade's area of responsibility
 - Who filed the report? (First attending crew)
 - Compare incident location with station and brigade area boundaries (GIS - more data preprocessing required)
- Average over two financial years ('01-'03)
 - Take account of year-to-year fluctuations
 - Minimise impact of overall growth

More Analysis Basics

- Area of responsibility calculated from map boundaries using GIS
- Population values obtained from 2001
 Census of Population and Housing (ABS)
- Compare census Collection Districts with station areas to estimate population

Service Type and Number of Incidents

- 237 urban stations
- 3 types (permanent, composite, auxiliary)

4 types

 Do the types of stations and brigades we have now match their workloads?

Station Type and Number of Incidents

- Station type correlates well with number of incidents (r = 0.81)
- Type of station can be predicted fairly accurately from breakdown of incident types (discriminant analysis)
 - 59/65 permanent stations
 - 10/10 composite stations
 - 144/162 auxiliary stations

Brigade Type and Number of Incidents

- Brigade type correlates only moderately with number of incidents (r = 0.50)
- Voluntary reporting policy may be skewing the results
- Maybe the type of brigade doesn't match current workloads too well
- Too few incidents to try to predict brigade type from incident type breakdown

Incident Numbers, Population and Area

- Can demographic variables be used to predict emergency services workload?
- Correlation between number of incidents and population = 0.79
- Correlation between number of incidents and area of responsibility = -0.36
- No other significant factors
 - Socioeconomic advantage/disadvantage
 - Passenger vehicle registrations
 - Remoteness

Incident Numbers, Population and Area

- Constructed linear regression model
- Results correlated highly with actual numbers of incidents (r = 0.85)
- More predictive than current station and brigade classification systems

Incident Numbers, Population and Area

Ways this can be used

- 1. Proposals for redefining boundaries
- Compare proposed area and population against similar combinations
- Shows what type of station is most comparable to what currently exists elsewhere in the state

Ways this can be used

- 2. Planning for the future
- Consider existing areas and their predicted future populations
- Where will the growth be?
- To keep the same level of service delivery, how many more resources do we need?

So where do we get information on the future?

- Population projections ABS / OESR
 - Statistical Divisions to 2026
 - Queensland as a whole to 2051
 - Includes age-group data
- More localised Department of Local Government
 - 2006, 2011, 2016, 2021

Broadhectare Data

Conclusions

- Service delivery assessment and planning can be enhanced by use of statistics and demographic data
- Only considers base level resources
- Specialised resources held centrally need to be looked at separately
- GIS mapping of data can help show where risks are higher

Acknowledgements

- Operations, Risk and Planning Unit, QFRS
 - Roger Bird (Concepts and output specifications)
- GIS Unit, QFRS
 - Mapping station and brigade boundaries
 - Broadhectare map
- QFRS Urban and Rural personnel

